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The phase-ordering kinetics of the two-dimensional uniaxial nematic has been studied using a cell dynamic
scheme. The system after quench fromT=` was found to scale dynamically with an asymptotic growth law
similar to that of the two-dimensional Os2d model squenched from above the Kosterlitz-Thouless transition
temperatured, i.e.,Lstd,ft / lnst / t0dg1/2 swith nonuniversal time scalet0d. We obtained the true asymptotic limit
of the growth law by performing our simulation for a sufficiently long time. The presence of topologically
stable 1/2-disclination points is reflected in the observed large-momentum dependencek−4 of the structure
factor. The correlation function was also found to tally with the theoretical prediction of the correlation
function for the two-dimensional Os2d system.
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The phase ordering of various systems with scalar, vector,
and tensor order parameters has gained considerable interest
over the last few yearsf1g. The system quenched from a
high-temperature homogeneous disordered phase into an or-
dered phase does not get ordered instantaneously, instead the
various degenerate ground states compete to be selected
f1,2g. In the process, the system develops length scales that
grow with time and topological defects, if present, are elimi-
nated. An infinite system will never achieve complete order-
ing and the length scale will increase without any bound. If a
single growing length scale characterizes the evolving sys-
tem then it is said to scale dynamically. Rutenberg and Bray
f3g proposed a very general technique, known as the energy
scaling approach, to estimate growth laws in purely dissipat-
ing systems that scale dynamically. However, their scheme
could also be applied to find out the relation between various
length scales for a system in which dynamical scaling does
not hold. If the growth law observed is different from their
estimation then we can say that the system violates dynami-
cal scaling. There are a large number of systems where the
failure of dynamical scaling is observed, e.g., the one-
dimensional XY model f4g, the nonconserved two-
dimensional Os3d model f5g, and the conserved spherical
model f6g, etc.

The model we have studied is described by the Hamil-
tonian

H = − o
ki,jl

sfi,f jd2,

wheref is the usual Osnd vector spin. Due to the spin inver-
sion symmetry, the model represents a uniaxial nematic. The
phase ordering of the same model was studied by Blundell
and Brayf7g using a cell dynamic scheme ford=2, n=2, and
d=3, n=3. In the present paper we have studied it ford=2
and n=3. It differs from the usual two-dimensional Os3d
model due to its local inversion symmetry. While in the two-

dimensional Os3d model, there is no stable topological sin-
gular defect, in the present model, due to presence of local
inversion symmetry. The order parameter space, instead of
being a simple three-dimensional spherefas in the case of the
usual Os3d modelsg, is a three–dimensional sphere with an-
tipodal points identified. This gives rise to topologically
stable singular point defects of strength ±1/2swhere the di-
rector rotates around the defect core by 180°d. The mapping
of other 1/2 integrals’ defects are homotopically equivalent
to the mapping of 1/2 defects. A −1/2-defect configuration
is continuously deformable to a 1/2 defect configuration.
Integral defects are topologically unstable due to the so-
called “escape to the third dimension.” Hence the first or the
fundamental homotopy group of the system is just the two
element groupZ2 sh0,1jd f8g.

In general, the Osnd model withd=n−1 supports nonsin-
gular topologically stable extended spin configurations car-
rying an integral topological charge, known as topological
texturessor antitextures, for negative topological chargesd
f9g. In the two-dimensional Os3d model the textures are
known as Skyrmions, instantons, or baby Skyrmions. The
various length scales associated with these weakly interact-
ing textures evolve with different growth laws in the one-
dimensionalXY model and in the two-dimensional Os3d
model, which give rise to scaling violations in these systems
f4,5g. In the two-dimensional Os3d model, the minimum en-
ergy configuration for an isolated texture is obtained by ste-
reographically projecting the order parameter sphere on the
physical spacef3g. The configuration covers the order pa-
rameter space exactly once and hence the texture is associ-
ated with a topological charge 1. In the present model one
would expect the presence of the two-dimensional Os3d-like
textures, but our effort to find them using the algorithm pre-
scribed by Berg and Luscherf10g resulted in the detection of
no textures at all. This may be explained purely on the basis
of homology of the order parameter space. Hindmarshf11g,
on the basis of topology or more specifically homology of
the order parameter spaceswhich is the projective plane RP2

in the nematicsd, has shown that in three-dimensional
quenched nematics the probability of occurrence of mono-
poles is very low. Unlike in the Heisenberg model, in real
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nematics, in order to get a monopole, the order parameter
space has to be covered twice and a special arrangement over
many uncorrelated domains is required. This is responsible
for a very low probability s,10−8d of occurrence of the
monopoles. In case of the two-dimensional RP2 model san
example of which is the present modeld a similar argument
should also be valid for the textures and this, perhaps, ex-
plains why we could not find the textures in this model. In
case of the two-dimensional Os3d model, the different
growth rates associated with the internal and external length
scales of the extended textures are responsible for the failure
of single length scalingf5,3g. Since in the present model
texturessor antitexturesd are highly suppressed due to topo-
logical reasons, the scaling violation is less likely. In the
present paper we have established that the system scales dy-
namically.

We have used the cell dynamic schemef7,13g for study-
ing the coarsening dynamics of the soft-spin version of the
concerned model. The discrete time updating relation is

fn+1sid = DF1

4o
j

„fn
ˆ sid,fn

ˆ s jd…fns jd − fnsidG
+ Efn

ˆ sidtanh„ufnsidu….

The sum is over nearest neighbors ofi. The parameterD is
called the diffusion constant, which determines the strength
of the coupling between various cells evolving with time.
The value of the parameterE should always be greater than
unity and it determines the depth of quenchf13g. In the
above discrete time updating relation, the unit vectorssrep-
resented by hatsd are used for stability of the iteration pro-
cess. However one must avoid using bothfs jd as unit vec-
tors as this leads to a freezing of the configuration in some
metastable regionf7g.

The phase-ordering kinetics of the two-dimensional
uniaxial nematic have been studied in details by Zapotocky
et al. f12g. Using a cell dynamic scheme, they have shown
that dynamical scaling is violated in two-dimensional
uniaxial nematics films. They observed different values of
the growth exponents, in the familiar algebraic growth law
Lstd, tf sf is known as a growth exponentd, corresponding
to different length scales. In determining the effective growth
exponents they used the time range between 200 and 2000.
However, as indicated by Rojas and Rutenbergf16g, in the
context of the issue of dynamical scaling in two-dimensional
XYmodel quenched from aboveTKT sthe Kosterlitz-Thouless
transition temperatured, that in order to decide whether a sys-
tem violates dynamical scaling or not, one must find the
effective growth exponent in the true asymptotic limit after it
is constant with time and before the finite size effect starts
playing its role. They observed no violation in the dynamical
scaling in the two-dimensionalXY model. Like integral sin-
gular point defectssknown as vorticesd present in the two-
dimensional XY model, the present two-dimensional model
also supports topologically stable ±1/2 disclination points.
This is the main finding of this paper. In Fig. 1, we have
shown the Schlieren patterns in a 1803180 uniaxial nematic
placed between crossed polarizers at different times as indi-

cated in the figure. The patterns were obtained in the same
way as discussed in Refs.f12,14,15g. So it is expected that
the growth laws should be similar. By performing the simu-
lation for a sufficiently long run to get the true asymptotic
limit, we have shown that the two-dimensional uniaxial nem-
atic scales dynamically by establishing that the same
asymptotic growth law is valid for various length scales. In-
stead of the usualtf growth law, the system was found to
scale asymptotically in a manner similar to the two-
dimensionalXY model quenched from aboveTKT with the
growth law,Lstd,ft / lnst / t0dg1/2 st0 nonuniversal time scaled
f16,17g. We have performed our simulation with two lattice
sizes 2563256 and 5123512. By comparing the results of
the two lattice sizes, we did not find any significant finite
size effect up to the time limit we have investigated.

The normalized correlation function in the present model
is given by

Csr,td = 3/2k„f̂s0d,f̂srd…2l − 1/2,

wherek l represents the average over various random initial
statessrandom length and directiond. The scaling form of
correlation function is given by

Csr,td = f„r/Lcorstd…,

where theLcorstd is the length scale required to collapse the
correlation functions for different time. In Fig. 2 we have
shown the scaling plot ofCsr,td averaged over 20 initial
states for a 2563256 lattice.

The structure factor scales with respect toLk=1/kkl f16g,
where kkl=oSsk,tdK /oSsk,td, is the first moment of struc-

FIG. 1. The Schlieren patterns of the 1803180 uniaxial nematic
placed between a crossed polarizer at different times as indicated in
the figure. The polarizing microscope textures were obtained using
the Muller matrices approachf12,14,15g. The 1/2-disclination point
defects are identified by the intersection of two dark brushes and
two white brushes. Two annihilating pairs of point defects are indi-
cated by marked portions within the figure.
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ture factor. The scaling form of the structure factor is given
by

Ssk,td = Lk
2gfkLkstdg.

In Fig. 3 we have shown the plot of lnfLk
−2Ssk,tdg against

skLkd. From the generalized Porod’s law, the large-
momentum structure factor for a two-dimensional system
with point defects should be proportional tordefk

−4

f1,12,18,19g. In the present system the density of the point
defectssrdefd scales asLdef

−2 , whereLdef is the typical defect
separation length. In the large-momentum limit we obtained
the slope of lnfLk

−2Ssk,tdg versuskLk plot equal to −4 as
shown in Fig. 3, which verifies Porod’s law. The good col-
lapse of the tail verifies thatLk andLdef have asymptotically
the same growth law. In Fig. 4, where we have tried the
collapse of the correlation function with respect to the defect
separation, poor collapse at the initial stage of dynamics does

not, however, indicate the violation of dynamical scaling. At
late stages the collapse shown in Fig. 4 is quite acceptable. In
Fig. 5 we have verified that the growth law for all concerned
lengths is asymptotically the same as that for the two-
dimensionalXY model, because of the linear dependence of
t /L2std on lnstd. Figure 5 also verifies that the present system
does not violate dynamical scaling. The correlation function
that we obtained in our simulation also tallies with the Bray-
Puri predictionf19g of the equal time correlation function for
Os2d model, i.e.,

Csr,td = sg/pdfBs1/2,3/2dg2Fs1/2,1/2,2;g2d,

where

gsr,td = exps− r2/8td,

Bsx,yd is the beta function, andFsa,b,c;zd is the hypergeomet-
ric function.

FIG. 2. Scaling plot of the correlation func-
tion Csr,td againstr /Lcorstd for a 2563256 lattice
sD=0.1, E=1.1d obtained after collapsing the
correlation function at different time stepssas in-
dicated in Fig. 4d. The correlation length is ob-
tained by usingC fLcorstd ,tg=0.3. The agreement
of the Bray-Puri predictionf19g for the Os2d s¯d
model with the scaled correlation functions1d st
=400d is shown in the inset. The BP function
fBPsxd=s1/pdexps−x2/2d fBs1/2,3/2dg2 Ff1/2,
1/2,2;exps−x2dg. The maximum value of theLcor

obtained is 19.35, which is much smaller than the
linear size of the lattice, i.e., 256.

FIG. 3. Log-log plot of the structure factor
scaling function of a 2563256 lattice sD=0.1,
E=1.1d. The first momentkkl is used for rescal-
ing of momenta. The straight linesdottedd has a
slope of −4, which indicates the validity of the
generalized Porod’s law.
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Thus in the scaling form we haveCsr ,td= fBPsxd sBP
stands for Bray and Purid, wherex=r /Lstd andLstd=s4td1/2.
The logarithmic factor is not correctly reflected in that func-
tion. However, for comparison we have plotted thefBPsxd
and the scaled correlation functionsfor t=400d in the inset of
Fig. 2. We performed our simulation with higher values ofD
s0.5d and got similar asymptotic results. Higher values ofD
are useful in achieving the asymptotic regime faster. How-
ever, the finite size effect is also more prominent in case of
largeD. We have not considered noise in the time evolution
equation; hence we are effectively working atT=0. How-
ever, it is known that quenching toT=0 may lead to meta-
stable freezingf20g. In order to check that our results are not
influenced by such freezing, we performed a number of
simulationssalmost 100 stepsd with noise, by adding a con-

stant amplitudesof the order of 0.1d random configuration to
the order parameter. The noise amplitude used was enough to
generate a large number of pairs of disclination point defects.
We could not find any discrepancy with the results obtained
without noise.

To summarize we would like to focus on the main find-
ings of our paper. We have confirmed that dynamical scaling
is not violated in a two-dimensional nematic with order pa-
rameter dimensionality three, and asymptotically the growth
laws are the same as that of the two-dimensionalXY model
quenched from aboveTKT si.e., the initial state with free
vorticesd. Consideration of topological defects in the issue of
dynamics is very necessary, because the structure of the de-
fects determines the large-momentum dependence of the
structure factor, which has an important role in the determi-

FIG. 4. The attempted collapse of the correla-
tion function for a 2563256 latticesD=0.1 and
E=1.1d with respect to the defect separation
lengthLdef=1/rdef

1/2. The failure of collapse at the
initial stages of phase ordering does not indicate
the violation of dynamical scaling. In the
asymptotic limit the correlation function scales
well with respect to the defect separation, indicat-
ing the proportionality ofLcorstd andLdefstd.

FIG. 5. The plot oft /L2std vs lnstd for three
lengths Lcors3d, Ldefs+d, and Lkspd for a 512
3512 latticesD=0.1 andE=1.1d. The observed
linear dependence at late timessover a wide
range fromt=5500 to t=14 400d indicates that
the dynamical scaling growth law Lstd
,ft / lnst / t0dg1/2 holds. However, the time scalet0
is found to be nonuniversal.
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nation of the growth lawsf3g. In the Osnd model with n
ø2, the topological defects dominate the dynamics. Since
both the present two-dimensional model and the two-
dimensionalXY model support singular point defects, it is
expected that the dynamics should be similar and this is es-
tablished in this paper. We were able to establish the ex-
pected result and achieved the true asymptotic limit of the

dynamical scaling by performing longer simulation with the
help of increased computational power now available.
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