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Dynamical scaling in two-dimensional quenched uniaxial nematic liquid crystals
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The phase-ordering kinetics of the two-dimensional uniaxial nematic has been studied using a cell dynamic
scheme. The system after quench frdme was found to scale dynamically with an asymptotic growth law
similar to that of the two-dimensional (@) model (quenched from above the Kosterlitz-Thouless transition
temperaturg i.e., L(t) ~ [t/In(t/ty) ]¥2 (with nonuniversal time scalg). We obtained the true asymptotic limit
of the growth law by performing our simulation for a sufficiently long time. The presence of topologically
stable 1/2-disclination points is reflected in the observed large-momentum depemdéndéehe structure
factor. The correlation function was also found to tally with the theoretical prediction of the correlation
function for the two-dimensional @) system.

DOI: 10.1103/PhysRevE.71.026119 PACS nuni)er61.30.Jf, 05.70.Ln, 64.60.Cn

The phase ordering of various systems with scalar, vectodimensional @3) model, there is no stable topological sin-
and tensor order parameters has gained considerable intergstiar defect, in the present model, due to presence of local
over the last few yearfl]. The system quenched from a inversion symmetry. The order parameter space, instead of
high-temperature homogeneous disordered phase into an dreing a simple three-dimensional sphigae in the case of the
dered phase does not get ordered instantaneously, instead th&ial G3) modeld, is a three—dimensional sphere with an-
various degenerate ground states compete to be selectgdodal points identified. This gives rise to topologically
[1,2]. In the process, the system develops length scales thatable singular point defects of strength +1(¥¢here the di-
grow with time and topological defects, if present, are elimi-rector rotates around the defect core by 18The mapping
nated. An infinite system will never achieve complete order-of other 1/2 integrals’ defects are homotopically equivalent
ing and the length scale will increase without any bound. If ato the mapping of 1/2 defects. A —1/2-defect configuration
single growing length scale characterizes the evolving sysis continuously deformable to a 1/2 defect configuration.
tem then it is said to scale dynamically. Rutenberg and Brayntegral defects are topologically unstable due to the so-
[3] proposed a very general technique, known as the energsalled “escape to the third dimension.” Hence the first or the
scaling approach, to estimate growth laws in purely dissipatfundamental homotopy group of the system is just the two
ing systems that scale dynamically. However, their schemelement grougZ, ({0,1}) [8].
could also be applied to find out the relation between various In general, the @) model withd=n-1 supports nonsin-
length scales for a system in which dynamical scaling doegular topologically stable extended spin configurations car-
not hold. If the growth law observed is different from their rying an integral topological charge, known as topological
estimation then we can say that the system violates dynamiextures (or antitextures, for negative topological charges
cal scaling. There are a large number of systems where tH®]. In the two-dimensional (3) model the textures are
failure of dynamical scaling is observed, e.g., the oneknown as Skyrmions, instantons, or baby Skyrmions. The
dimensional XY model [4], the nonconserved two- various length scales associated with these weakly interact-
dimensional @) model [5], and the conserved spherical ing textures evolve with different growth laws in the one-

model[6], etc. dimensional XY model and in the two-dimensional (8
The model we have studied is described by the Hamil-model, which give rise to scaling violations in these systems
tonian [4,5]. In the two-dimensional 3) model, the minimum en-
ergy configuration for an isolated texture is obtained by ste-
H=-> (qsi,qu)z, reographically projecting the order parameter sphere on the
(i physical spacg3]. The configuration covers the order pa-

rameter space exactly once and hence the texture is associ-
ated with a topological charge 1. In the present model one
ould expect the presence of the two-dimension)dike
'extures, but our effort to find them using the algorithm pre-
scribed by Berg and Luschgt0] resulted in the detection of
no textures at all. This may be explained purely on the basis
of homology of the order parameter space. Hindmaigh,
on the basis of topology or more specifically homology of
the order parameter spagehich is the projective plane RP
in the nematics has shown that in three-dimensional
*Electronic address: subhro@juphys.ernet.in quenched nematics the probability of occurrence of mono-
"Electronic address: skroy@juphys.ernet.in poles is very low. Unlike in the Heisenberg model, in real

where ¢ is the usual @n) vector spin. Due to the spin inver-
sion symmetry, the model represents a uniaxial nematic. Th,
phase ordering of the same model was studied by Blunde
and Bray[ 7] using a cell dynamic scheme fdr2,n=2, and
d=3, n=3. In the present paper we have studied itder2
and n=3. It differs from the usual two-dimensional(8)
model due to its local inversion symmetry. While in the two-

1539-3755/2005/72)/0261195)/$23.00 026119-1 ©2005 The American Physical Society



S. DUTTAAND S. K. ROY PHYSICAL REVIEW E71, 026119(2005

nematics, in order to get a monopole, the order paramete
space has to be covered twice and a special arrangement ov
many uncorrelated domains is required. This is responsible
for a very low probability(~1078) of occurrence of the
monopoles. In case of the two-dimensional?RRodel (an
example of which is the present mogel similar argument
should also be valid for the textures and this, perhaps, ex:
plains why we could not find the textures in this model. In '™
case of the two-dimensional (8) model, the different :
growth rates associated with the internal and external lengtt =4800 =6400
scales of the extended textures are responsible for the failur, -
of single length scalindg5,3]. Since in the present model
textures(or antitextures are highly suppressed due to topo-
logical reasons, the scaling violation is less likely. In the
present paper we have established that the system scales d
namically.

We have used the cell dynamic schefiel3] for study-
ing the coarsening dynamics of the soft-spin version of theh
concerned model. The discrete time updating relation is

=8000 =9600

bria(i) =D }2 ((gn(i)a ¢?n(l'))¢n(j) _ ¢n(i)1 FIG. 1. The Schlieren patterns of the 18@80 uniaxial nematic
45 placed between a crossed polarizer at different times as indicated in
R the figure. The polarizing microscope textures were obtained using

+ Egy(i)tanh(|¢,(0))) . the Muller matrices approa¢hi2,14,15. The 1/2-disclination point

Th . iahborsi oTh D i defects are identified by the intersection of two dark brushes and
€ sum IS over nearest neig orstolhe pgramete IS two white brushes. Two annihilating pairs of point defects are indi-
called the diffusion constant, which determines the strengti,;aq by marked portions within the figure.

of the coupling between various cells evolving with time.
The value of the paramet& should always be greater than
unity and it determines the depth of quenid8]. In the
above discrete time updating relation, the unit vectoep-
resented by hatsare used for stability of the iteration pro-
cess. However one must avoid using b@itj) as unit vec-
tors as this leads to a freezing of the configuration in som
metastable regiofi7].

The phase-ordering kinetics of the two-dimensional

cated in the figure. The patterns were obtained in the same
way as discussed in Refl2,14,19. So it is expected that
the growth laws should be similar. By performing the simu-
lation for a sufficiently long run to get the true asymptotic
éimit, we have shown that the two-dimensional uniaxial nem-
atic scales dynamically by establishing that the same
asymptotic growth law is valid for various length scales. In-

uniaxial nematic have been studied in details by Zapotock g?g (gsthrﬁ Ltft?(iﬁl gr?r\]th 'ﬂégﬂgrsﬁﬁﬂrwf ft?]lénc:\,\tg_
et al. [12]. Using a cell dynamic scheme, they have shown’: ASymp y .

; : L : : : dimensionalXY model quenched from abovB with the
that dynamical scaling is violated in two-dimensional 172 . .
uniaxial nematics films. They observed different values ofglrg\’f?h Is\\;v’ I;](t)w[t“?(t/tf’)]d (& qonl,;n;yersa!t::n&; s?:e;)t_e
the growth exponents, in the familiar algebraic growth Iaw[. 17. We have performed our simula lon wi o fatlice
L(t)~t* (¢ is known as a growth exponentorresponding sizes 256< 256 and 51X 512. By comparing the results of

to different length scales. In determining the effective growththe twfcr) lattice S|zhes,_we I(.j'd. not End any S|gn|f|cz:1jnt finite
exponents they used the time range between 200 and 200%i.zehe ect upl_to tde t'm? Imit we .ave.lnvr:asUgate ' del
However, as indicated by Rojas and Rutentjerg, in the . The normalized correlation function in the present mode
context of the issue of dynamical scaling in two-dimensional'® 9'V€" by

XY model quenched from abovig (the Kosterlitz-Thouless C(r,t) = 3/2((0), d(r)D - 1/2,

transition temperatujethat in order to decide whether a sys- . o
tem violates dynamica] Sca”ng or not, one must find theWhere< > represents the average over various random initial
effective growth exponent in the true asymptotic limit after it States(random length and directionThe scaling form of

is constant with time and before the finite size effect start$orrelation function is given by

playing its role. They observed no violation in the dynamical Cr, 1) = f(r/Ley (D)),

scaling in the two-dimensiona{Y model. Like integral sin-

gular point defectgknown as vorticespresent in the two- Where thel (1) is the length scale required to collapse the
dimensional XY model, the present two-dimensional modelcorrelation functions for different time. In Fig. 2 we have
also supports topologically stable +1/2 disclination points.shown the scaling plot oC(r,t) averaged over 20 initial
This is the main finding of this paper. In Fig. 1, we have states for a 258 256 lattice.

shown the Schlieren patterns in a 28080 uniaxial nematic The structure factor scales with respectie1/(k) [16],
placed between crossed polarizers at different times as indiwhere (k)=>Sk,t)K/>=9k,t), is the first moment of struc-
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0.9
0.8
FIG. 2. Scaling plot of the correlation func-
0.7 tion C(r,t) againstr/L.,(t) for a 256X 256 lattice
0.6 (D=0.1, E=1.1) obtained after collapsing the
correlation function at different time stefass in-
= 0.5 dicated in Fig. 4. The correlation length is ob-
S 0.4 tained by using,'_‘ [Lcor_(t)_,t]:0.3. The agreement
of the Bray-Puri prediction19] for the Q2) (---)
0.3 model with the scaled correlation functien) (t
=400 is shown in the inset. The BP function
0.2 fap(X)=(1/mexp-x2/2) [B(1/2,3/27T2 F[1/2,
01 1/2,2;exg-x?)]. The maximum value of the,
obtained is 19.35, which is much smaller than the
0 linear size of the lattice, i.e., 256.
-0.1 . . . . *
0 0.5 1 1.5 2 25 3

VL0

ture factor. The scaling form of the structure factor is givennot, however, indicate the violation of dynamical scaling. At
by late stages the collapse shown in Fig. 4 is quite acceptable. In
Fig. 5 we have verified that the growth law for all concerned
S(k,t) = LiglkLy(t)]. lengths is asymptotically the same as that for the two-
dimensionalXY model, because of the linear dependence of
t/L2(t) on In(t). Figure 5 also verifies that the present system
. . does not violate dynamical scaling. The correlation function
momentum structure factor for a two-dimensional SYSteMpat we obtained in our simulation also tallies with the Bray-

with point defects should be proportional tpgek™ . - . . .
[1,12,18,19. In the present system the density of the pointgl(Jzn) %i%'g}'?rglg] of the equal time correlation function for

defects(pgey) Scales ad 2, whereLy is the typical defect

separation length. In the large-momentum limit we obtained C(r,t) = (y/m)[B(1/2,3/121F(1/2,1/2,2 5°),

the slope of 1L °S(k,t)] versuskL, plot equal to -4 as

shown in Fig. 3, which verifies Porod's law. The good col- Where

lapse of the tail verifies thdt, andLg4.; have asymptoticall _ 2

thz same growth law. In Fli(g. 4, \C/j\ﬁf]ere we ﬁa\?e triedythe .Y = expl(= /),

collapse of the correlation function with respect to the defecB(x,y) is the beta function, ané(a,b,c;z) is the hypergeomet-
separation, poor collapse at the initial stage of dynamics doasc function.

In Fig. 3 we have shown the plot of[lln;zs(k,t)] against
(kL. From the generalized Porod's law, the large-

2 . . - . . .
1 I O ' \ |
0+ _
N’X‘ _1 L i
x FIG. 3. Log-log plot of the structure factor
Vool | scaling function of a 256256 lattice (D=0.1,
= E=1.1). The first momentk) is used for rescal-
24 3l | ing of momenta. The straight lin@otted has a
2 slope of -4, which indicates the validity of the
= 4 generalized Porod’s law.
5L J
_6 I L
-3 -2 -1 3

In(k/<k>)
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0.8

0.7 +

J FIG. 4. The attempted collapse of the correla-
tion function for a 256< 256 lattice(D=0.1 and

41 E=1.1) with respect to the defect separation
lengthLge=1/p5% The failure of collapse at the
initial stages of phase ordering does not indicate
the violation of dynamical scaling. In the
asymptotic limit the correlation function scales

051

C 1)

04

QOO NOODPANOO AN ROONCO S NO—
Rt TP P P TR L P L T .

PIPININIPINININININININININININININININININN
OOO0OOOCOOOOOCOOOOOOOOO0O0OH
OOOOOOOOOOOOOOOOOOOOO00

PGSO 0PCGOCeDSOAd rP>POORMO XX +

IO BB A CGICIGINININY — =

0.2 well with respect to the defect separation, indicat-
ing the proportionality ol.y(t) andLge(1).
0.1+
0+
-0.1 L
0 0.5 1 15 2 2.5 3 3.5 4

Thus in the scaling form we hav€(r,t)=fgp(x) (BP  stant amplitud€of the order of 0.1random configuration to
stands for Bray and Pyriwherex=r/L(t) andL(t)=(4t)'2. the order parameter. The noise amplitude used was enough to
The logarithmic factor is not correctly reflected in that func- generate a large number of pairs of disclination point defects.
tion. However, for comparison we have plotted thg(x)  We could not find any discrepancy with the results obtained
and the scaled correlation functi¢ior t=400) in the inset of  without noise.

Fig. 2. We performed our simulation with higher value<Dof To summarize we would like to focus on the main find-
(0.5 and got similar asymptotic results. Higher valuesof ings of our paper. We have confirmed that dynamical scaling
are useful in achieving the asymptotic regime faster. How4is not violated in a two-dimensional nematic with order pa-
ever, the finite size effect is also more prominent in case ofameter dimensionality three, and asymptotically the growth
large D. We have not considered noise in the time evolutionlaws are the same as that of the two-dimensiofimodel
equation; hence we are effectively working B¢0. How-  quenched from abové@y (i.e., the initial state with free
ever, it is known that quenching =0 may lead to meta- vorticeg. Consideration of topological defects in the issue of
stable freezing20]. In order to check that our results are not dynamics is very necessary, because the structure of the de-
influenced by such freezing, we performed a number ofects determines the large-momentum dependence of the
simulations(almost 100 stepswith noise, by adding a con- structure factor, which has an important role in the determi-

55
50 F
45 |
40r FIG. 5. The plot oft/L?(t) vs In(t) for three
35 lengths Leo(X), Lgef+), and Ly(*) for a 512
NCR X 512 lattice(D=0.1 andE=1.1). The observed
\4 linear dependence at late timéever a wide
= 30F range fromt=5500 tot=14 400 indicates that
the dynamical scaling growth lawL(t)
25F ~[t/In(t/to)]*2 holds. However, the time scalg
is found to be nonuniversal.
20 |
15
10
8.2
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nation of the growth lawg3]. In the Qn) model withn  dynamical scaling by performing longer simulation with the
=<2, the topological defects dominate the dynamics. Sincdelp of increased computational power now available.
both the present two-dimensional model and the two-

dimensionalXY model support singular point defects, it is _ 1he authors are thankful to Dr. A.D. Rutenberg for useful
expected that the dynamics should be similar and this is egliscussions. One of U$.D.) acknowledges the financial as-
tablished in this paper. We were able to establish the exsistance from the Council of Scientific and Industrial Re-
pected result and achieved the true asymptotic limit of thesearch(CSIR), India.
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